
A Testbed for research and development of SDN
applications using OpenFlow

Nádia Pires Gonçalves
nadia.goncalves@tecnico.ulisboa.pt

Instituto Superior Técnico, Universidade de Lisboa

ABSTRACT
Network technologies have been dominated by traditional
paradigms resulting from the TCP/IP model and local net-
works, centered on traditional switching and routing con-
cepts. The current network complexity at the data cen-
ter, local and operator levels present new management chal-
lenges and flexibility requirements. The SDN paradigm emerged
to tackle these challenges. The main goal of SDN is to sepa-
rate the control plane from the data plane, which are usually
tied together in conventional network devices, in such way
that these can be managed, controlled and monitored by
custom applications, enabling increased net- work flexibility
independently of proprietary solutions.

OpenFlow is a communication protocol based on the SDN
paradigm, which defines a communication between the data
plane and the control plane. This project aims to create a
testbed in order to facilitate the comprehension about Pro-
grammable Network.

Keywords
Software-Defined Networking, OpenFlow, POX

1. INTRODUCTION
Since 1970 there have not been many changes in tradi-

tional networking technologies, thus increasing network os-
sification [13]. The IP protocol based Internet has had huge
success, being primarily centered on the traditional concepts
of routing and switching. Though, the current network com-
plexity is facing significant networking issues, such as QoS,
security, mobility and management.

The current state of networking technology introduces un-
necessary cost and complexity. This is a universal issue,
since network architectures are increasingly complex and
have low scalability [4]. Many solutions have been proposed
to substitute current networks, but have never been imple-
mented for being extremely difficult to test.

The fact that the current network technology and devices
are installed at a large scale, with numerous devices and

protocols, and that they are mostly based on enclosed pro-
prietary network devices, meaning that only equipment ven-
dors can configure and create protocols, does not help the
implementation of new ideas that may arise by the network
research community or by new requirements of network op-
erators. In fact, most current network devices have an inte-
grated control and data plane, forcing service providers to
use a repetitive process to configure each device or group of
devices of the same brand in an independent way [7].

In the last few years, the concept of SDN emerged as a
proposal to overcome these limitations [8]. SDN triggered a
great interest on researchers and network operators. SDN,
have the goal of separating the data plane from the control
plane, allowing the restructuring of the network manage-
ment so that it is possible for programmers to control the
network data plane directly [10].

The OpenFlow [11] interface is an open protocol proposal
that defines a communication API between the data plane
and the control plane. Openflow was the first SDN proto-
col widely accepted by both the research community and
vendors, providing high performance and granular network
traffic control through network devices.

The basic idea behind OpenFlow is to create a system that
guarantees researchers and network operators the largest
possible control over packet flows on network devices. For
this control to happen, the decisions for packet treatment
are based on a subset of information that different devices
extract from the packet during processing. OpenFlow allows
the storage of tuples with this data on the network device’s
flow-tables, associating an action with these entries flows
[14].

Even though OpenFlow is recent and the number of real
world applications is still limited, there are already several
large scale companies interested in using OpenFlow, such as,
Google[12], Verizon [6] and Yahoo [9], among others. These
players have shown particular interest in standardizing the
OpenFlow protocol, thus forming the Open ONF [5].

The projects already available are GENI[1] in the United
States, JGN2plus [2] in Japan and OFELIA[3] in Europe.

SDN applications are still something being developed; the
concepts are still theoretical, even though there are imple-
mentations on big corporations or on the Universities that
founded OpenFlow. There are still many questions, about
OpenFlow.

As time goes by, an increasing number of companies or
Universities are implementing programmable networks with
the OpenFlow interface.

1.1 Objectives and Contributions

1



This thesis aims to develop a testbed for SDN applica-
tions, with the purpose of academic analysis and research,
as well as potential application in the internal data network
at Técnico Lisboa. With this study it is known that it will be
easier to understand how to implement the programmable
networks in a real network.

To achieve the necessary acknowledgment about SDN with
Openflow for the future application in Técnico Lisboa, it is
imperative that the final goal must fulfill the following re-
quirements and specifications:

• Implementation of a network with OpenFlow support;

• Configure and monitor the network;

• Identify use cases;

• Implement use cases in a test scenario;

• Analyze the network, extracting results regarding net-
work performance;

1.2 Dissertation Structure
This dissertation is composed of 6 chapters which are ar-

ranged as follow; chapter 2 presents the state of the art which
describes who is the SDN and how it works, chapter 3 de-
scribes the architecture of the project, chapter 4 describes
the implementation strategies, the equipment and software
chosen and how implements the several use cases, chapter 5
presents the evaluation of the several use cases in order to
understand if the SDN is the biggest thing and the chapter 6
summarizes the work developed, the problems obtained and
the future work.

2. SOFTWARE-DEFINED NETWORK WITH
OPENFLOW PROTOCOL ARCHITECTURE

This thesis aims to create a SDN testbed, that takes ad-
vantage of the needs of network administrator to control
the network and the development a testbed for OpenFlow
at Técnico de Lisboa, in order to provide an experimental
and research setup of SDN at IST and to envisage possible
applications of SDN in the operational Técnico de Lisboa’s
network. This chapter describes which is the architecture
that was implemented to support several use cases.

In Section 2.1 present the global architecture, that is ex-
plain the networks components, how they inter-connect with
each other, the OpenFlow Switch architecture and why this
architecture. In Section 2.1.1 will be define the communica-
tion between controller and switch.

2.1 Overview Architecture
The testbed consists of three switches, computers and a

laptop running POX as the controller.
In order for the testbed to work, network configuration is

necessary, using network cables for the connections. Some
switch ports are designated as OpenFlow ports, thus the
controller may used them to send its flow. The controller’s
IP address is also specified along with relevant information
such as mode and datapath ID.

As shown the figure 1, the network topology, it is com-
posed with 3 OpenFlow switches and 1 Controller. The
Controller is linked to all OpenFlow switches by a IEEE

Figure 1: OpenFlow Testbed

802.3 wired connection, and the switches are connected be-
tween each others. The controller controls all the Ethernet
interface ports of switches, as well as WLAN interface.

The names that identify the OpenFlow switches are com-
posed by a two letters ”SW” followed by a number. The goal
of this identifications is to have a perception and to knows
which is the switch that one person it is work.

The OpenFlow switches support the instructions made by
Controller, and this instructions are put in the data plane
of switch. This flow tables contains several flow entries that
make a matching with packet. It’s means that the con-
troller is the central piece of the network architecture, this
controller manage the network, maps out the network’s sta-
tus, takes a given configurations and renders into OpenFlow
entries and it sends this entries to OpenFlow Switches.

The OpenFlow switches architecture is a quite different
than a normal switch, is installed a packet on the switches,
that makes essentially a ”dumb” device that forward packets
between ports.

The figure ??, represents the OpenFlow Switches and
we can verified that switch is composed for 4 components,
Management, Data plane, Device Firmware and OpenFlow
client. The data plane contains the flow entries given by the
controller, this flow entry it’s add in the switch flow table,
the device firmware it is a firmware.

2.1.1 Exchanged Message between Controller to Switch
Openflow is a communication protocol that provides a se-

cure communication between controller and Switches.
It is important denote that this protocol does not respon-

sible for the flow table definition, but is responsible for the
flow table forwarding to the switches. It is mean that when
a Openflow switches communicate with controller are neces-
sary exchanged some message types. This protocol supports
three message types:

Controller-to-switch messages: are initiated by the Con-
troller and are used to manage or directly inspect the
switch state. These messages are, commonly, the first
used when the OpenFlow Channel is established.

2



Asynchronous messages: are initiated by the switch. They
are used to update the Controller on events occurring
on the network and are also used to change the switch
state. These messages are sent independently of Con-
troller request. Switches send this type of message to
the Controller to indicate the arrival of a packet, switch
state change or in case of an error.

Symmetric messages: are sent without any solicitation in
either direction and are used upon connection start up
or for request/reply messaging or even other messaging
purposes. This type of message can be initiated by
both sides, either by the switch or by the Controller
[8].

The communication between Controller and Openflow switch
it is make in two phases, the initial communication and the
such as: the Initial phase, this phase are divided in some
sub-phases, the main goal of this phase is the communica-
tion establishment while the phase connectivity check has
the intention to verified the status of all switches, sending
keep alive messages, two phases; the handshake phase are
send messages when the communication is established, in
order words when is fired a ConnectionUp event. The other
phase are send messages when is fired a event that the Open-
flow switch do not know handling with a specified packet
sending a PacketIn message, for example.

Connection Establishment.
When a Openflow Switch joins the programmable network

is initiated a TLS session establishment, after this session are
established,is exchanged several messages to establishment
the connection.

Figure 2: Connection Establishment between OpenFlow Con-
troller and OpenFlow switch

As show the figure 2 it is send out an hello message, this
message type are exchanged between the switch and con-
troller upon connection startup.

After the hello messages the controller and the Openflow
switch starts the features advertise, they sending messages
features request and features Reply between the which other.
The feature request message is sending by the controller to
switch, while the switch reply to Controller with features
reply message.

A features Request consists of an message without body
that controller send to switch and this switch answer with a
features reply.

A features Reply consists of an message with the body
contains the switch characteristics, such as datapath iden-
tifier, the buffer length, the number of tables that the dat-
apath supports, the switch capacities, the actions that the
switch supported and list of ports and the respective speeds.

The set config message it is send by the controller to
switch, when the controller want that switch send a flow
expirations.

An echo Request consists of an OpenFlow header together
with an random length data field. This data field might be
a message timestamp to check latency, or zero-size to verify
liveness between the switch and controller.

An echo Reply message consists of an Openflow header
together with unmodified data field.

Event Handling.
After of all ConnectionUp are established is initiated the

event handling. The controller is waiting for the events that
come the switch and the switch waiting for response for Con-
troller part.

Figure 3: Event Hadling between OpenFlow switch and Open-
Flow Controller

When the switch don’t know what to do with a specified
packet and if this switch have not a kind of drop instruction,
so the switch send a packet for the controller. As shown in
figure 3, the PacketIn message is a way for the switch to send
a message to the controller.This is very important, because
your function is pushes packet forwarding rules by controller
to an Openflow switch.

When this type of message happens is fired an event han-
dler allowing that controller processes the packet-in, and
generates one or more flow-mod type message and sends it
to one or more switches or send a packet-out to one or more

3



switches depending on functionality.
After the controller processing the packet it is send out to

all of devices with actions that the devices have to handler.
The controller can sends a packet-out or flow-mod message
replying to the switch.

Controller sends packet-out message to one or more switches
depending on functionality. A packet-in has the same packet
payload as a packet-out. If the controller did not send a
packet-out to the datapath, then the client sending the orig-
inal dataflow packet would have to resend the packet found
in the packet-in.

While, the flow-mod message permits to instruct a switch
to add a particular flow entry in the flow table. This type
of message can happen when the connection starts or when
is fired a event to the controller, while the packet-out it is
only sent when the switch send a packet-in message.

3. EVALUATION
This chapter reproduces the results that allow a short eval-

uation of the SDN behavior comparing with traditional net-
works and of how SDN networks perform in reactive versus
proactive mode.

3.1 Tests Objectives
The main goal of this thesis is to prove the concept of the

SDN with OpenFlow protocol, to accomplish this goal it’s
necessary to realize several tests, with packet captures from
Wireshark.

These scenarios will allow the measurement of the packet
transmission time, the switch flow table installation cost and
the time it takes for a switch to establish a match with a
packet.

3.1.1 Metrics
This section presents a brief explanation of the evaluation

metrics used to test the project. The evaluation metrics
used are flexibility and performance evaluation.

Flexibility: this metric verifies device functionality after
successive configuration changes with OpenFlow, due
to the creation of several test scenarios;

Performance: this metric evaluates the performance of an
OpenFlow network and is composed of latency and
throughput measurements.

3.2 SDN Network Vs Traditional Network
This section evaluate the behavior of the SDN and the

traditional network.
The two test that permits to make this comparison is la-

tency and throughput.

3.2.1 Latency
The main goal of this metric is to prove that SDN net-

works basically have better or equal latency compared to
traditional networks.

To achieve this goal a ping that measures the latency was
necessary. These pings are made in SDN hybrid mode.

As shown in figure 4 the latency of the packets is bet-
ter than the latency of the packets in traditional networks,
though when the first packet is received by the destination
the latency in SDN is higher (118 ms) than in traditional
networks, but was not shown in the figure because it would
make the data impossible to read.

Figure 4: Performance Comparison between SDN and Tradi-
tional Network

This behavior happens because in a first phase the packet
is sent to the controller and the flow tables entries are in-
stalled and only after this procedure are the other packets
sent to the destination.

Network Type Minimum Average Maximum
Traditional Network 0.774 ms 0.803 ms 0.886 ms

Programmable Network 0.560 ms 12.336 ms 118.336 ms

Table 1: RTT comparison between SDN and Traditional Net-
work

As shown in the table 1 the average latency is worse, be-
cause of the first packet that went to the Controller.

3.2.2 Throughput
Throughput is the rate of successful message delivery over

a communication channel. This data may be delivered over
a physical or logical link, or pass through a certain network
node. The throughput is usually measured in bits per sec-
ond.

To realize this test the iperf tool was used, it was possible
to measure this parameter over a TCP connection between
the nodes. Following the statistics obtained from the previ-
ous sections, there is a relational logic on the performance
of the protocol. The result of this test is the same of that
in subsection 3.2.1, which is a minimal difference between
programmable networks versus traditional networks.

As show the figure 5, the only difference between this two
networks are when the controller react in reactive mode and
hybrid mode.

3.3 SDN behavior Evaluation
It is difficult to prove with values the flexibility of SDN,

the only way to prove this flexibility is to apply several use
cases and to add one OpenFlow switch at a time.

With tested use cases it was possible to conclude, that the
controller has the same behavior in all topics, although, after
several runs the controller could no longer communicate with
the equipment, making a Reboot of the controller as well as
the equipment necessary. This was the only defect that was
more noticeable, it is noteworthy to refer that the controller
was run on a personal computer.

4



Figure 5: Throughput Comparison between SDN and Tradi-
tional Network

3.3.1 Proactive Versus Reactive Mode
Before presenting the results of several uses cases, it was

also necessary to show the difference between reactive and
proactive mode, to not speak of the hybrid mode, because
it’s the best of both worlds.

The tests made were exactly the same as in the previous
section. It can be seen in the graph that when one speaks
of a proactive network its as if there is talk of a traditional
network.

Figure 6: Latency in Proactive Mode Network

As can be seen, by analyzing figure 6, the proactive mode
behaves similarly to traditional networks due to the instal-
lation of the flow table entries in the beginning of the com-
munication.

Figure 7: Latency in Reactive Mode Network

As show the figure 7, in reactive mode the latency is
much higher because every packet has to be processed by
the controller as there is no flow table entry installation in
the switches, bringing about the bottleneck problem.

3.3.2 Packets Capture
In order to better understand how SDNs with OpenFlow

works, the capture of some packets was necessary, in order
to understand what are the messages exchanged.

The exchange of messages and their capture was per-
formed in several use-cases, some of them were the Static
Routing use case, Learning Switch use case and the VLANs
use case.

In all the captures taken, they all have common features,
they are either the entry of a packet that the network device
does not recognize or they’re a flow table entry insertion.

When the network is in reactive mode flow mod type mes-
sages are ignored, using instead packet out type messages.

Figure 8: Latency in Reactive Mode Network

Another focus of analysis regarding captures and flow ta-
ble entries are VLANs, as can be seen by analyzing the figure
8, all packets that are sent to VLAN 3 will match the correct
flow entry in the switch’s flow table and will be forwarded
to the correct port.

It is noteworthy that in the vlans case the results were
limited, making vlans work much better in a network with
only one device rather than 3.

As can be seen in figure 9, the devices react as soon as an
unexpected change occurs alerting the switch immediatly.

Figure 9: LLDP Switch Down

3.4 Summary
In summary, the hosts do not know what is going on be-

hind the network or how the network is being managed, the

5



results obtained show that there are no high latency values
in programmable networks.

4. CONCLUSIONS

4.1 Summary
Programmable networks (SDN) with the OpenFlow inter-

face have distinguished themselves in the past few years as
a potential substitute for current networks. In order to un-
derstand the behavior of this new paradigm the creation of
a realistic environment that implements OpenFlow is neces-
sary.

In order to make SDN more perceptible, a testbed was
created implementing several use cases in a way that this
new paradigm could be understood. To make this testbed
the purchase of OpenFlow supporting devices was necessary.

This project introduces SDN as a test platform with the
main goal of serving the academic community of Técnico
Lisboa - Taguspark. This Thesis aims to create the testbed
that will allow some insight into OpenFlow, such as scala-
bility, mobility and versatility possibilities.

This document is orgnaized in 4 chapters. The first chap-
ter pertains state-of-the-art, then in chapter 2 the proposed
architecture is explained, leading to chapter 3 where im-
plementation of the architecture is executed, and finally to
prove that that programmable networks are a valuable asset
an evaluation was performed in chapter 4.

In state-of-the-art we explain what OpenFlow and SDNs
are, the applications made for this new paradigm, what tools
exist and the choices made regarding them.

In chapter 2 we analyze the architecture to create the
testbed. This architecture will always have a controller that
allows transmission of instructions, management of the net-
work, among others. This type of architecture is central-
ized,bringing with it bottleneck problems.

The implementation of this architecture involved the choice
of equipment and software, and justifying the choices made.
We also explain why we chose to implement these use-cases,
how we did it and what was learned from implementing
them. It is in the implementation chapter that problems
start to arise and things don’t turn out as expected.

Finally, to prove SDN is a valuable asset, several tests were
necessary. These tests consist of network analysis, how the
performance compared against current networks, and if the
solution is scalable or not comparing to current networks.

After doing the network analysis, we found that SDNs are
a valuable asset to the new networking paradigm, because
besides being esaily configured, a significant reduction in
configuration time was observed as well reduced frustration
comparing to tradicional networks, which have to be config-
ured device by device. Beyond these advantages the results
were surprising, they showed that, performance-wise, SDNs
are better than a traditional network, even though the first
packet always has high latency values, because it has to
be processed by the controller, the remaining packets have
lower latency comparing to a traditional network.

To close the conclusion, according to demand, the created
applications, the implementation of this type of networks in
big enterprises, the network’s performance level and reduc-
tion of CAPEX and OPEX, among others, allow us to state
that the networking paradigm will change in 10 years time.

4.2 Learnings and Challenges

With this Thesis we learned that what is expected, alot
of times does not happen. This investigation required a lot
of research, working to understand the theory and trying to
apply the knowledge at an applicational level, which did not
happen due to obstacles that will be referenced next. It is
important to note that this thesis should serve as a teaching
to whoever chooses to study SDN. We encountered several
obstacles such as:

• The existence of little information about OpenFlow,
all of it being of a more theoretical nature than usual.

• Pox is an accessible and easily usable software, though
being made by the comunity and non-comercial it has
many flaws, such as:

– Up until the lastest version, lauched in April de
2014, this software did not allow instructions to
be sent to specific network devices.

– Incomplete network protocols, the biggest exam-
ple being the dhcp module.

The problem with this module is that there is no
way to distinguish between the interfaces, becom-
ing a problem to the creation of vlans. In this case
the solution adopted was to divide IP ranges tho-
rughout the vlans and then create a firewall rule,
forbidding them to communicate with each other.

– Another problem was encountered creating vlans,
caused by the software itself which did not allow
the creation of vlans. The solution adopted was
to create the vlans on the switch using them as in-
terfaces and configuring them from the controller.

• The utilization of the oldest version of OpenFlow was
another problem, making it difficult to configure the
network and analysing if it could become a valuable
asset.

• When the equipment arrived there were no OpenFlow
packages installed, it took considerable time to find
the OpenFlow package, at the time we were seriously
considering the installation of OpenWrt.

Despite all these obstacles, we were able to overcome them.
We learned that even though with many research on theory
the investigation of a theme less known is very complex.

We realized that in 2013 there were already developments
on SDNs with OpenFlow, most of it was theoretical, though
many different software controllers were developed by equip-
ment vendors The impact was huge and there are an increas-
ing number of implementation contests for use-cases on this
theme. It is also noteworthy that equipment vendors are
coming up with their own solutions for SDNs, because they
do not want to lose complete control over their equipment,
making researchers dependent on using their solutions.

5. ACKNOWLEDGMENTS
I want to thank my advisor Prof. Mira da Silva who gave

me unconditional support in all phases of the thesis.

6. REFERENCES
[1] Exploring networks of the future, 2013.

[2] Jgn2plus.

6



[3] Ofelia, 2010.

[4] Liberating network architectures with the open SDN.
Big switch networks, February 2013.

[5] Open networking foundation, 2013.

[6] S. Elby. How openflow can revolutionize the carrier
business, September 2012.

[7] N. Foster, A. Guha, M. Reitblatt, A. Story,
M. Freedman, N. Katta, C. Monsanto, J. Reich,
J. Rexford, C. Schlesinger, D. Walker, and
R. Harrison. Languages for software-defined networks.
Communications Magazine, IEEE, 51(2):128–134,
2013.

[8] O. N. Foundation. Openflow switch specification
version 1.3.1. Technical report, Open Networking
Foundation, September 2012.

[9] I. Gashinsky. Sdn in warehouse scale datacenters sdn
in warehouse scale datacenters v2.0, April 2012.

[10] N. Kim and J. Kim. Building netopen networking
services over openflow-based programmable networks.
In Information Networking (ICOIN), 2011
International Conference on, pages 525–529, January
2011.

[11] N. McKeown, T. Anderson, H. Balakrishnan,
G. Parulkar, L. Peterson, J. Rexford, S. Shenker, and
J. Turner. Openflow: enabling innovation in campus
networks. SIGCOMM Comput. Commun. Rev.,
38(2):69–74, Mar. 2008.

[12] ONF. The google sdn wan. 2012.

[13] M.-K. Shin, K.-H. Nam, and H.-J. Kim.
Software-defined networking (sdn): A reference
architecture and open apis. In ICT Convergence
(ICTC), 2012 International Conference on, pages
360–361, October 2012.

[14] S. Shin, N. Kim, N. Kim, and J. Kim. Flow-based
performance enhancements of sage visualcasting using
openflow programmable networking. In Advanced
Communication Technology (ICACT), 2011 13th
International Conference on, pages 1270–1274,
February 2011.

7


